Problem Analysis #9

7.82s
2,391 toks
Problem Statement

Consider the 10$$\times$$ 10 real symmetric matrix

A=[20101010101010101010102010101010101010101010201010101010101010101020101010101010101010102010101010101010101010201010101010101010101020101010101010101010102010101010101010101010201010101010101010101020].A = \left[ \begin{array}{cccccccccc} 20 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 20 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 20 & 10 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 20 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 20 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 20 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 20 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 20 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 20 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 20 \end{array} \right].

Calculate

N:=det(A).N := \det(A).
Ground Truth
110000000000
Execution Trace
Reasoning Process

[THOUGHT]
The matrix AA is a 10×1010 \times 10 real symmetric matrix where all diagonal entries are 20 and all off-diagonal entries are 10. This is a classic example of a matrix that can be written in the form:

A=1011T+10IA = 10 \mathbf{1} \mathbf{1}^T + 10 I

where 1\mathbf{1} is the vector of all ones, and II is the identity matrix.

But more precisely, note that:

  • The diagonal entries are 20,
  • The off-diagonal entries are 10.

So we can write:

A=1011T+10IA = 10 \mathbf{1} \mathbf{1}^T + 10 I

Because:

  • 1011T10 \mathbf{1} \mathbf{1}^T gives 10 everywhere (diagonal and off-diagonal),
  • Adding 10I10 I adds 10 to the diagonal, making diagonal entries 10+10=2010 + 10 = 20, and keeping off-diagonal as 10.

So:

A=1011T+10IA = 10 \mathbf{1} \mathbf{1}^T + 10 I

Let J=11TJ = \mathbf{1} \mathbf{1}^T, the 10×1010 \times 10 matrix of all ones.

Then:

A=10J+10I=10(J+I)A = 10J + 10I = 10(J + I)

We want det(A)=det(10(J+I))=1010det(J+I)\det(A) = \det(10(J + I)) = 10^{10} \det(J + I)

Now, JJ is a rank-1 matrix with eigenvalues:

  • λ=10\lambda = 10 (with multiplicity 1, eigenvector 1\mathbf{1}),
  • λ=0\lambda = 0 (with multiplicity 9).

So J+IJ + I has eigenvalues:

  • 10+1=1110 + 1 = 11 (once),
  • 0+1=10 + 1 = 1 (nine times).

Thus:

det(J+I)=1119=11\det(J + I) = 11 \cdot 1^9 = 11

Therefore:

det(A)=101011=110000000000\det(A) = 10^{10} \cdot 11 = 110000000000

[PYTHON]

# We compute det(A) = 10^10 * 11
result = 10**10 * 11
print(result)
Tool Output
[PYTHON OUTPUT] 110000000000 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT]
The Python output confirms that the determinant of matrix AA is 110000000000110000000000. This matches the analytical result derived from eigenvalue decomposition of the matrix structure. The final answer is:

\boxed{110000000000}

Final Model Output
110000000000

Comparative Analysis (P9) (Average across runs)

Avg Time Taken

EXAONE-4.0.1-32B (high)
1180.7
Deepseek-R1-distill-Qwen-32B (high)
114.5
Gemma-3-27B
91.9
Llama-VARCO-8B-Instruct
68.8
Solar-Pro-2 (31B)(high)
30.2
Gemini-3-Pro-Preview
24.9
Deepseek-V3.2
19.3
HCX-007(high)
16.9
Grok-4.1-fast
14.3
A.X-4.0 (72B)
13.9
GPT-oss-20B (high)
11.5
Claude-Opus-4.5
9.4
Qwen3-30B-A3B-2507
8.5
GPT-5.1 (high)
6.9

Avg Token Usage

EXAONE-4.0.1-32B (high)
25940.7
Llama-VARCO-8B-Instruct
12475.0
Solar-Pro-2 (31B)(high)
6433.3
Gemini-3-Pro-Preview
4874.3
Gemma-3-27B
4846.0
Grok-4.1-fast
4259.3
Deepseek-R1-distill-Qwen-32B (high)
4045.7
A.X-4.0 (72B)
3684.7
Deepseek-V3.2
3590.0
Claude-Opus-4.5
3365.3
GPT-oss-20B (high)
3077.7
Qwen3-30B-A3B-2507
2697.0
GPT-5.1 (high)
2694.7
HCX-007(high)
1782.3